COMBINATORICA

Akadémiai Kiadó - Springer-Verlag

HOW BIG CAN THE CIRCUITS OF A BRIDGE OF A MAXIMAL CIRCUIT BE?

J. KINCSES

Received 16 November 1983

If $C \subset E(G)$ is a maximum cardinality cocircuit of a 2-connected graph G, then no other maximum cocircuit is contained in one and the same block of G-C. The analogous conjecture for real representable matroids would have important applications to classifying convex bodies with a certain Helly type property.

0. Introduction

To classify the k-Helly dimensional convex bodies, it would be very important to know whether the following conjecture is true or not.

Conjecture 0.1. Let M(H) be a connected real linear matroid and $C \subseteq H$ a maximum cardinality circuit of M(H). Then no bridge of C in M(H) — as a restriction of M(H) — contains any |C|-element circuit.

This problem has been solved so far only in some special cases. For example, it is true for graphic matroids (see [2]). In [3] it is proved for real linear matroids containing at most five element circuits. In this paper we prove the above statement for bond matroids of a graph.

1. Notations and Lemmas

M(S) will denote a matroid on a set S, and $M^{\perp}(S)$ its dual matroid. If $C \subseteq S$ then M(S)/C is the contraction of M(S) through C, and $M(S) \cdot C$ is the restriction of M(S) to C. Let G be a simple graph. Then B(G) denotes the bond matroid of G, and P(G) the polygon matroid of G.

Definitions 1.1. Let M(S) be a matroid. We say that M(S) is connected if every pair of points of it is contained in a circuit. The maximal connected restrictions of M(S) are called its connected components.

We define the *bridges* of $C \subseteq M(S)$ as the connected components of M(S)/C. We say that a subgraph G_1 of the graph G is a *block* of G if G_1 is connected, has no cut vertices and it is maximal with this properties.

202 J. KINCSES

The following results can be found in [1].

Lemma 1.2. Let M(S) be a finite matroid. We have for $C \subseteq S$, $(M(S)/C)^{\perp} = M^{\perp}(S) \times (S-C)$.

Lemma 1.3. A finite matroid M(S) is connected if and only if $M^{\perp}(S)$ is connected. The components of $M^{\perp}(S)$ are the dual matroids of the components of M(S).

Lemma 1.4. If G is a 1-connected graph, and G_1 and G_2 are vertex disjoint 1-connected subgraphs of G, then there exists a bond of G which separates G_1 and G_2 .

Lemma 1.5. The connected components of the polygon matroid of a graph G are the polygon matroids of the blocks of G.

2. The main result

Theorem 2.1. Let B(G) be the bond matroid of a simple graph G. If B(G) is connected and C_0 is a maximum cardinality circuit in B(G), then no bridge of C_0 — as a restriction of B(G) — contains a $|C_0|$ -element circuit.

Proof. From Lemma 1.3 it follows that $B^{\perp}(G) = P(G)$ is connected, which means that G is 2-connected graph. Let C_0 , $|C_0| = n$ be a maximal cardinality circuit in B(G), that is, C_0 is an n-element bond of G. It is obvious from 1.3 that the bridges of C_0 in B(G) are the dual matroids of the connected components of $(B(G)/C_0)^{\perp} = P(G) \cdot (G - C_0)$. But using Lemma 1.5 we obtain that the connected components of $P(G) \cdot (G - C_0)$ are precisely the polygon matroids of the blocks of $G - C_0$.

Since C_0 is a bond of G, it separates G into two connected components, say K_1 and K_2 , and so the blocks of the graph $G-C_0$ are the blocks of K_1 and K_2 . Now let K_0 be a block of K_2 , and suppose that there exists a bond C_1 , $|C_1|=n$, of G with $C_1 \subseteq K_0$. We distinguish two cases.

Ist case. If C_1 is not bond of K_0 . Let K_{00} ; K_{01} ; ...; K_{0l} be the 1-connected components of K_0-C_1 . Clearly $l \ge 2$. We colour a vertex of K_0 red iff it is incident with one of the edges of C_0 or it is contained in an another block of K_2 . It can be proved that any two red vertices can be connected by a path in $G-K_0$. This implies, since C_1 is a bond of G, that every K_{0i} containing red vertices, is in the same connected component of $G-C_1$, and those having no red vertices are in the other connected component. Thus there exists one and only one K_{0i} , say K_{00} , which has no red vertex, and there is no edge of C_1 connecting two distinct K_{0i} , K_{0j} , $1 \le i$, $j \le l$, $i \ne j$. Hence C_1 can be partitioned into l nonempty classes

$$C_{1i} = \{e_{ab} \in C_1: a \in K_{00}, b \in K_{0i}\}, 1 \le i \le l.$$

The connected components of K_2-C_1 are

$$K_{00}, K_{0i} \cup T_i \quad 1 \leq i \leq l,$$

where T_i is the union of those connected components of $K_2 - K_0$ which have common vertex with K_{0i} . But then the family of sets

$$C_{0i} = \{e_{xy} \in C_0, x \in K_1, y \in K_{0i} \cup T_i\} \quad 1 \le i \le l$$

forms a partition of C_0 .

Suppose that there exists an integer i_0 , $1 \le i_0 \le l$, and $|C_{0i_0}| \ne |C_{1i_0}|$, say $|C_{0i_0}| < |C_{1i_0}|$. Then

 $C' = \bigl(\bigcup_{\substack{j \neq i_0}} C_{0j}\bigr) \cup C_{1i_0}$

is a bond of G, and

$$|C'| = \sum_{j \neq i_0} |C_{0j}| + |C_{1i_0}| > \sum_{1 \leq j \leq l} |C_{0j}| = n,$$

which is impossible. Hence for every i, $1 \le i \le l |C_{0i}| = |C_{1i}|$.

Lemma 2.2. There exists a bond of K_{00} , which separates K_{00} into K_{001} and K_{002} , such that there is no C_{1i} , $1 \le i \le l$, of which every edge is adjacent to K_{001} , and there exist at least two C_{1i} , C_{1j} ($i \ne j$) both of which have at least one edge adjacent to K_{001} .

Proof of the lemma. Let V_i denote the set of vertices of K_{00} incident with one of the edges of C_{1i} . Since K_0 is block, $|V_i| \ge 2$, $1 \le i \le l$. Now let S be a path in K_{00} connecting a vertex from V_1 to a vertex from V_2 , such that S has no interior vertex belonging to V_1 or V_2 . Let P be a vertex from V_1 and $P \notin S$. Using Lemma 1.4, it follows that there exists a bond $C_{00}^{(1)}$ of K_{00} , which separates K_{00} into $K_{001}^{(1)}$ and $K_{002}^{(1)}$, and $S \subseteq K_{001}^{(1)}$, $P \in K_{002}^{(1)}$. Suppose that or every $P \in K_{002}^{(1)}$, we have a bond $C_{00}^{(1)}$ of K_{00} separating K_{00} into $K_{001}^{(1)}$ and $K_{002}^{(1)}$. We say that a vertex $P \in K_{001}^{(1)}$ is green iff there exists an integer $P \in K_{001}^{(1)}$ and $P \in V_{001}^{(1)}$, $P \in K_{001}^{(1)}$ and say it is red iff there exists an integer $P \in K_{001}^{(1)}$ and $P \in V_{001}^{(1)}$, $P \in K_{001}^{(1)}$. Assume that there exists a red-green path $P \in V_{001}^{(1)}$, $P \in K_{001}^{(1)}$.

Assume that there exists a red-green path s' in $K_{001}^{(0)}$ (that is a path in $K_{001}^{(0)}$ connecting a red vertex to a green vertex), and a vertex $p \in K_{001}^{(0)} \cap C_{00}^{(0)}$, $p \notin s'$. Then, by Lemma 1.4, we obtain a bond C^* of $K_{001}^{(0)}$ that separates $K_{001}^{(0)}$ into $K_{0011}^{(0)}$ and $K_{0012}^{(0)}$ and $s' \subseteq K_{0011}^{(0)}$, $p \in K_{0012}^{(0)}$. But then $C_{00}^{(0)}$ can be divided into two classes:

$$C_{001}^{(t)} = \{e_{ab} \in C_{00}^{(t)} : a \in K_{002}^{(t)}, b \in K_{0011}^{(t)}\}$$

$$C_{002}^{(t)} = \{e_{ab} \in C_{00}^{(t)} : a \in K_{002}^{(t)}, b \in K_{0012}^{(t)}\}$$

 $(C_{001}^{(t)})$ may be empty). Clearly $C_{00}^{(t+1)} = C^* \cup C_{001}^{(t)}$ is a bond in K_{00} , and if it separates K_{00} into $K_{001}^{(t+1)}$ and $K_{002}^{(t+1)}$ then $s' \subseteq K_{001}^{(t+1)}$, $p \in K_{002}^{(t+1)}$. The bond sequence $C_{00}^{(t)}$ satisfies the following conditions.

- (a) $K_{001}^{(i)} \supseteq K_{001}^{(i+1)}$, $|V(K_{001}^{(i)})| > |V(K_{001}^{(i+1)})|$
- (b) there is a green vertex in $K_{001}^{(1)}$, and if a vertex is green in $K_{001}^{(l)}$, then it is green in $K_{001}^{(l+1)}$ too.
- (c) for every integer j there exist integers i(j), k(j),

$$i(j) \neq k(j), \quad 1 \leq i(j), \quad k(j) \leq l,$$

and

$$V_{i(j)} \cap K_{001}^{(j)} \neq \emptyset, \quad V_{k(j)} \cap K_{001}^{(j)} \neq \emptyset.$$

Because of (a) the sequence is finite. Let $C_{00}^{(r)}$ be its last member. Then either $K_{001}^{(r)}$ contains no red vertices or every red-green path in $K_{001}^{(r)}$ contains all vertices of $C_{00}^{(r)} \cap K_{001}^{(r)}$.

In the first case, by (b) and (c), $C_{00}^{(r)}$ satisfies the conditions of the lemma. In the second case, the order of vertices of $C_{00}^{(r)} \cap K_{001}^{(r)}$ is the same on every red-green path in $K_{001}^{(r)}$. Let p_0 be the first in this order and s^* be a red-green $r_0 z_0$ path in K_0 .

204 J. KINCSES

We may suppose that s^* has no red interior vertex. Walk from r_0 on s^* till we are in $K_{001}^{(r)}$ and let q_0 be the last vertex (posibly $q_0 = r_0$). Then q_0 is either green or $q_0 \in K_{001}^{(r)} \cap C_{00}^{(r)}$.

If q_0 is green then the section r_0q_0 of s^* contains p_0 . In the other case let r_1z_1 be a red-green path in $K_{001}^{(r)}$. If $p_0 \notin r_0q_0$ then the union of r_0q_0 and the section q_0z_1 of r_1z_1 does not contain p_0 and it is connected, so there exists a red-green path in $K_{001}^{(r)}$ (between r_0 and z_1) not containing p_0 , which is a contradiction. Hence we obtain that $p_0 \in s^*$, and this means that p_0 is a cutpoint of K_0 . But this is impossible since K_0 is block. This completes the proof of Lemma 2.2.

Going on with the proof of the original theorem, let C_{00} be a bond in K_{00} as in Lemma 2.2. Suppose that $C_{11}, ..., C_{1i_0}, \ 2 \le i_0 \le l$, are those which have a common vertex with both K_{001} and K_{002} , and $C_{1i_0+1}, ..., C_l$ are those which have not.

Then we can write

$$C_{1j} = C_{1j}^1 \cup C_{1j}^2, \quad 1 \le j \le i_0,$$

where

$$C_{1j}^1 = \{e \in C_{1j}, e \text{ is adjacent to } K_{001}\}$$

 $C_{1j}^2 = \{e \in C_{1j}, e \text{ is adjacent to } K_{002}\}.$

Since $|C_{11}^1| + |C_{11}^2| = |C_{11}|$, $|C_{12}^1| + |C_{12}^2| = |C_{12}|$, one of the inequalities $|C_{11}^2| + |C_{12}^1| \ge |C_{11}| = |C_{01}|$ or $|C_{11}^1| + |C_{12}^2| \ge |C_{12}| = |C_{02}|$ must be true. But

$$C' = C_{00} \cup C_{11}^2 \cup C_{12}^1 \cup \left(\bigcup_{\substack{3 \le j \le i_0 \\ i \ne 1}} C_{1j}^1 \right) \cup \left(\bigcup_{\substack{1 \le i \le l \\ i \ne 1}} C_{0i} \right)$$

$$C'' = C_{00} \cup C_{11}^1 \cup C_{12}^2 \cup (\bigcup_{\substack{3 \le j \le i_0 \\ i \ne 2}} C_{1j}^1) \cup (\bigcup_{\substack{1 \le i \le l \\ i \ne 2}} C_{0i})$$

are bonds of G, and

$$\begin{split} |C'| &\geq |C_{00}| + |C_{11}^2| + |C_{12}^1| + \sum_{\substack{1 \leq i \leq l \\ i \neq 1}} |C_{0i}| \geq 1 + |C_{11}^2| + |C_{12}^1| + \sum_{\substack{1 \leq i \leq l \\ i \neq 1}} |C_{0i}| \\ |C''| &\geq |C_{00}| + |C_{11}^1| + |C_{12}^2| + \sum_{\substack{1 \leq i \leq l \\ i \neq i}} |C_{0i}| \geq 1 + |C_{11}^1| + |C_{12}^2| + \sum_{\substack{1 \leq i \leq l \\ i \neq i}} |C_{0i}|. \end{split}$$

Thus either C' or C'' has at least n+1 elements, which is impossible.

2nd case. C_1 is a bond of K_0 . Then C_1 is bond of K_2 , and it separates K_2 into K_{21} and K_{22} , and C_0 has common vertices only with K_{21} . Let s_1 and s_2 be two interior vertex disjoint paths between a vertex from K_1 and a vertex from K_{22} . Since $s_1 \cap K_{21}$ and $s_2 \cap K_{21}$ are vertex disjoint subgraphs of K_{21} , there exists a connected component s_1' of $s_1 \cap K_{21}$ and a connected component s_2' of $s_2 \cap K_{21}$ such that

$$s'_1 \cap C_0 \neq \emptyset$$
, $s'_1 \cap C_1 \neq \emptyset$
 $s'_2 \cap C_0 \neq \emptyset$, $s'_2 \cap C_1 \neq \emptyset$.

Hence, by Lemma 1.4, we obtain a bond C_2 of K_{21} that separates K_{21} into K_{21}^1 and K_{21}^2 such that $s_1 \subseteq K_{21}^1$, $s_2 \subseteq K_{21}^2$. Both C_0 and C_1 can be partitioned into two classes:

$$C_0 = C_0^1 \cup C_0^2, \quad C_1 = C_1^1 \cup C_1^2,$$

where

$$C_0^1 = \{e \in C_0, e \text{ is adjacent to } K_{21}^1\}$$

$$C_0^2 = \{e \in C_0, e \text{ is adjacent to } K_{21}^2\}$$

$$C_1^1 = \{e \in C_1, e \text{ is adjacent to } K_{21}^1\}$$

$$C_1^2 = \{e \in C_1, e \text{ is adjacent to } K_{21}^2\}.$$

Both $C_0^1 \cup C_2 \cup C_1^2$ and $C_0^2 \cup C_2 \cup C_1^1$ are bonds of G, and since

$$|C_0^1| + |C_1^2| + |C_0^2| + |C_1^1| = 2n,$$

one of them has at least n+1 elements, which is impossible. This completes the proof of the Theorem.

References

- [1] M. AIGNER, Combinatorial Theory, Berlin—Heidelberg—New York: Springer-Verlag, (1979).
- [2] H. WALTER and H. J. Voss, Über Kreise in Graphen, Berlin: VEB Deutscher Verlag der Wissenschaften, (1974).
- [3] J. Kincses, The classification of 3 and 4-Helly dimensional convex bodies, Geometriae Dedicata, 22 (1987), 283—301.

János Kincses

József Attila University Bolyai Institute Aradi vértanúk tere 1. 6720 Szeged